Bcl-xL is translocated to the nucleus via CtBP2 to epigenetically promote metastasis.
Zhang T., Li S., Tan YA., Chen X., Zhang C., Chen Z., Mishra B., Na JH., Choi S., Shin SJ., Damle P., Chougoni KK., Grossman SR., Wang D., Jiang X., Li Y., Hissong E., Chen Y-T., Xiang JZ., Du Y-CN.
Nuclear Bcl-xL is found to promote cancer metastasis independently of its mitochondria-based anti-apoptotic activity. How Bcl-xL is translocated into the nucleus and how nuclear Bcl-xL regulates histone H3 trimethyl Lys4 (H3K4me3) modification have yet to be understood. Here, we report that C-terminal Binding Protein 2 (CtBP2) binds to Bcl-xL via its N-terminus and translocates Bcl-xL into the nucleus. Knockdown of CtBP2 by shRNA decreases the nuclear portion of Bcl-xL and reverses Bcl-xL-induced invasion and metastasis in mouse models. Furthermore, knockout of CtBP2 not only reduces the nuclear portion of Bcl-xL but also suppresses Bcl-xL transcription. The binding between Bcl-xL and CtBP2 is required for their interaction with MLL1, a histone H3K4 methyltransferase. Pharmacologic inhibition of the MLL1 enzymatic activity reverses Bcl-xL-induced H3K4me3 and TGFβ mRNA upregulation, as well as invasion. Moreover, the cleavage under targets and release using nuclease (CUT&RUN) assay coupled with next-generation sequencing reveals that H3K4me3 modifications are particularly enriched in the promotor regions of genes encoding TGFβ and its signaling pathway members in cancer cells overexpressing Bcl-xL. Altogether, the metastatic function of Bcl-xL is mediated by its interaction with CtBP2 and MLL1 and this study offers new therapeutic strategies to treat Bcl-xL-overexpressing cancer.